package client import ( "code.google.com/p/gomock/gomock" "github.com/fluffle/goirc/state" "github.com/fluffle/golog/logging" "strings" "testing" "time" ) type testState struct { ctrl *gomock.Controller st *state.MockTracker nc *mockNetConn c *Conn } // NOTE: including a second argument at all prevents calling c.postConnect() func setUp(t *testing.T, start ...bool) (*Conn, *testState) { ctrl := gomock.NewController(t) st := state.NewMockTracker(ctrl) nc := MockNetConn(t) c := SimpleClient("test", "test", "Testing IRC") logging.SetLogLevel(logging.LogFatal) c.st = st c.sock = nc c.cfg.Flood = true // Tests can take a while otherwise c.connected = true // If a second argument is passed to setUp, we tell postConnect not to // start the various goroutines that shuttle data around. c.postConnect(len(start) == 0) // Sleep 1ms to allow background routines to start. <-time.After(1e6) return c, &testState{ctrl, st, nc, c} } func (s *testState) tearDown() { s.st.EXPECT().Wipe() s.nc.ExpectNothing() s.c.shutdown() <-time.After(time.Millisecond) s.ctrl.Finish() } // Practically the same as the above test, but shutdown is called implicitly // by recv() getting an EOF from the mock connection. func TestEOF(t *testing.T) { c, s := setUp(t) // Since we're not using tearDown() here, manually call Finish() defer s.ctrl.Finish() // Set up a handler to detect whether disconnected handlers are called dcon := false c.HandleFunc(DISCONNECTED, func(conn *Conn, line *Line) { dcon = true }) // Simulate EOF from server s.st.EXPECT().Wipe() s.nc.Close() // Since things happen in different internal goroutines, we need to wait // 1 ms should be enough :-) <-time.After(time.Millisecond) // Verify that the connection no longer thinks it's connected if c.connected { t.Errorf("Conn still thinks it's connected to the server.") } // Verify that disconnected handler was called if !dcon { t.Errorf("Conn did not call disconnected handlers.") } } func TestClientAndStateTracking(t *testing.T) { ctrl := gomock.NewController(t) st := state.NewMockTracker(ctrl) c := SimpleClient("test", "test", "Testing IRC") // Assert some basic things about the initial state of the Conn struct if me := c.cfg.Me; me.Nick != "test" || me.Ident != "test" || me.Name != "Testing IRC" || me.Host != "" { t.Errorf("Conn.cfg.Me not correctly initialised.") } // Check that the internal handlers are correctly set up for k, _ := range intHandlers { if _, ok := c.handlers.set[strings.ToLower(k)]; !ok { t.Errorf("Missing internal handler for '%s'.", k) } } // Now enable the state tracking code and check its handlers c.EnableStateTracking() for k, _ := range stHandlers { if _, ok := c.handlers.set[strings.ToLower(k)]; !ok { t.Errorf("Missing state handler for '%s'.", k) } } if len(c.stRemovers) != len(stHandlers) { t.Errorf("Incorrect number of Removers (%d != %d) when adding state handlers.", len(c.stRemovers), len(stHandlers)) } // We're expecting the untracked me to be replaced by a tracked one if me := c.cfg.Me; me.Nick != "test" || me.Ident != "test" || me.Name != "Testing IRC" || me.Host != "" { t.Errorf("Enabling state tracking did not replace Me correctly.") } if c.st == nil || c.cfg.Me != c.st.Me() { t.Errorf("State tracker not enabled correctly.") } // Now, shim in the mock state tracker and test disabling state tracking me := c.cfg.Me c.st = st st.EXPECT().Wipe() c.DisableStateTracking() if c.st != nil || c.cfg.Me != me { t.Errorf("State tracker not disabled correctly.") } // Finally, check state tracking handlers were all removed correctly for k, _ := range stHandlers { if _, ok := c.handlers.set[strings.ToLower(k)]; ok && k != "NICK" { // A bit leaky, because intHandlers adds a NICK handler. t.Errorf("State handler for '%s' not removed correctly.", k) } } if len(c.stRemovers) != 0 { t.Errorf("stRemovers not zeroed correctly when removing state handlers.") } ctrl.Finish() } func TestSend(t *testing.T) { // Passing a second value to setUp stops goroutines from starting c, s := setUp(t, false) defer s.tearDown() // Assert that before send is running, nothing should be sent to the socket // but writes to the buffered channel "out" should not block. c.out <- "SENT BEFORE START" s.nc.ExpectNothing() // We want to test that the a goroutine calling send will exit correctly. exited := false go func() { c.send() exited = true }() // send is now running in the background as if started by postConnect. // This should read the line previously buffered in c.out, and write it // to the socket connection. s.nc.Expect("SENT BEFORE START") // Send another line, just to be sure :-) c.out <- "SENT AFTER START" s.nc.Expect("SENT AFTER START") // Now, use the control channel to exit send and kill the goroutine. if exited { t.Errorf("Exited before signal sent.") } // This sneakily uses the fact that the other two goroutines that would // normally be waiting for die to close are not running, so we only send // to the goroutine started above. Normally shutdown() closes c.die and // signals to all three goroutines (send, ping, runLoop) to exit. c.die <- struct{}{} // Allow propagation time... <-time.After(1e6) if !exited { t.Errorf("Didn't exit after signal.") } s.nc.ExpectNothing() // Sending more on c.out shouldn't reach the network. c.out <- "SENT AFTER END" s.nc.ExpectNothing() } func TestRecv(t *testing.T) { // Passing a second value to setUp stops goroutines from starting c, s := setUp(t, false) // We can't use tearDown here because we're testing shutdown conditions // (and so need to EXPECT() a call to st.Wipe() in the right place) defer s.ctrl.Finish() // Send a line before recv is started up, to verify nothing appears on c.in s.nc.Send(":irc.server.org 001 test :First test line.") // reader is a helper to do a "non-blocking" read of c.in reader := func() *Line { select { case <-time.After(time.Millisecond): case l := <-c.in: return l } return nil } if l := reader(); l != nil { t.Errorf("Line parsed before recv started.") } // We want to test that the a goroutine calling recv will exit correctly. exited := false go func() { c.recv() exited = true }() // Strangely, recv() needs some time to start up, but *only* when this test // is run standalone with: client/_test/_testmain --test.run TestRecv <-time.After(time.Millisecond) // Now, this should mean that we'll receive our parsed line on c.in if l := reader(); l == nil || l.Cmd != "001" { t.Errorf("Bad first line received on input channel") } // Send a second line, just to be sure. s.nc.Send(":irc.server.org 002 test :Second test line.") if l := reader(); l == nil || l.Cmd != "002" { t.Errorf("Bad second line received on input channel.") } // Test that recv does something useful with a line it can't parse // (not that there are many, parseLine is forgiving). s.nc.Send(":textwithnospaces") if l := reader(); l != nil { t.Errorf("Bad line still caused receive on input channel.") } // The only way recv() exits is when the socket closes. if exited { t.Errorf("Exited before socket close.") } s.st.EXPECT().Wipe() s.nc.Close() // Give things time to shake themselves out... <-time.After(time.Millisecond) if !exited { t.Errorf("Didn't exit on socket close.") } // Since s.nc is closed we can't attempt another send on it... if l := reader(); l != nil { t.Errorf("Line received on input channel after socket close.") } } func TestPing(t *testing.T) { // Passing a second value to setUp stops goroutines from starting c, s := setUp(t, false) defer s.tearDown() // Set a low ping frequency for testing. c.cfg.PingFreq = 50 * time.Millisecond // reader is a helper to do a "non-blocking" read of c.out reader := func() string { select { case <-time.After(time.Millisecond): case s := <-c.out: return s } return "" } if s := reader(); s != "" { t.Errorf("Line output before ping started.") } // Start ping loop. exited := false go func() { c.ping() exited = true }() // The first ping should be after 50ms, // so we don't expect anything now on c.in if s := reader(); s != "" { t.Errorf("Line output directly after ping started.") } <-time.After(50 * time.Millisecond) if s := reader(); s == "" || !strings.HasPrefix(s, "PING :") { t.Errorf("Line not output after 50ms.") } // Reader waits for 1ms and we call it a few times above. <-time.After(45 * time.Millisecond) if s := reader(); s != "" { t.Errorf("Line output under 50ms after last ping.") } // This is a short window (49-51ms) in which the ping should happen // This may result in flaky tests; sorry (and file a bug) if so. <-time.After(2 * time.Millisecond) if s := reader(); s == "" || !strings.HasPrefix(s, "PING :") { t.Errorf("Line not output after another 2ms.") } // Now kill the ping loop. if exited { t.Errorf("Exited before signal sent.") } // This sneakily uses the fact that the other two goroutines that would // normally be waiting for die to close are not running, so we only send // to the goroutine started above. Normally shutdown() closes c.die and // signals to all three goroutines (send, ping, runLoop) to exit. c.die <- struct{}{} // Make sure we're no longer pinging by waiting ~2x PingFreq <-time.After(105 * time.Millisecond) if s := reader(); s != "" { t.Errorf("Line output after ping stopped.") } if !exited { t.Errorf("Didn't exit after signal.") } } func TestRunLoop(t *testing.T) { // Passing a second value to setUp stops goroutines from starting c, s := setUp(t, false) defer s.tearDown() // Set up a handler to detect whether 001 handler is called h001 := false c.HandleFunc("001", func(conn *Conn, line *Line) { h001 = true }) // Set up a handler to detect whether 002 handler is called h002 := false c.HandleFunc("002", func(conn *Conn, line *Line) { h002 = true }) l1 := parseLine(":irc.server.org 001 test :First test line.") c.in <- l1 if h001 { t.Errorf("001 handler called before runLoop started.") } // We want to test that the a goroutine calling runLoop will exit correctly. // Now, we can expect the call to Dispatch to take place as runLoop starts. exited := false go func() { c.runLoop() exited = true }() // Here, the opposite seemed to take place, with TestRunLoop failing when // run as part of the suite but passing when run on it's own. <-time.After(time.Millisecond) if !h001 { t.Errorf("001 handler not called after runLoop started.") } // Send another line, just to be sure :-) l2 := parseLine(":irc.server.org 002 test :Second test line.") c.in <- l2 // It appears some sleeping is needed after all of these to ensure channel // sends occur before the close signal is sent below... <-time.After(time.Millisecond) if !h002 { t.Errorf("002 handler not called while runLoop started.") } // Now, use the control channel to exit send and kill the goroutine. if exited { t.Errorf("Exited before signal sent.") } // This sneakily uses the fact that the other two goroutines that would // normally be waiting for die to close are not running, so we only send // to the goroutine started above. Normally shutdown() closes c.die and // signals to all three goroutines (send, ping, runLoop) to exit. c.die <- struct{}{} // Allow propagation time... <-time.After(time.Millisecond) if !exited { t.Errorf("Didn't exit after signal.") } // Sending more on c.in shouldn't dispatch any further events h001 = false c.in <- l1 if h001 { t.Errorf("001 handler called after runLoop ended.") } } func TestWrite(t *testing.T) { // Passing a second value to setUp stops goroutines from starting c, s := setUp(t, false) // We can't use tearDown here because we're testing shutdown conditions // (and so need to EXPECT() a call to st.Wipe() in the right place) defer s.ctrl.Finish() // Write should just write a line to the socket. c.write("yo momma") s.nc.Expect("yo momma") // Flood control is disabled -- setUp sets c.cfg.Flood = true -- so we should // not have set c.badness at this point. if c.badness != 0 { t.Errorf("Flood control used when Flood = true.") } c.cfg.Flood = false c.write("she so useless") s.nc.Expect("she so useless") // The lastsent time should have been updated very recently... if time.Now().Sub(c.lastsent) > time.Millisecond { t.Errorf("Flood control not used when Flood = false.") } // Finally, test the error state by closing the socket then writing. s.st.EXPECT().Wipe() s.nc.Close() c.write("she can't pass unit tests") } func TestRateLimit(t *testing.T) { c, s := setUp(t) defer s.tearDown() if c.badness != 0 { t.Errorf("Bad initial values for rate limit variables.") } // We'll be needing this later... abs := func(i time.Duration) time.Duration { if i < 0 { return -i } return i } // Since the changes to the time module, c.lastsent is now a time.Time. // It's initialised on client creation to time.Now() which for the purposes // of this test was probably around 1.2 ms ago. This is inconvenient. // Making it >10s ago effectively clears out the inconsistency, as this // makes elapsed > linetime and thus zeros c.badness and resets c.lastsent. c.lastsent = time.Now().Add(-10 * time.Second) if l := c.rateLimit(60); l != 0 || c.badness != 0 { t.Errorf("Rate limit got non-zero badness from long-ago lastsent.") } // So, time at the nanosecond resolution is a bit of a bitch. Choosing 60 // characters as the line length means we should be increasing badness by // 2.5 seconds minus the delta between the two ratelimit calls. This should // be minimal but it's guaranteed that it won't be zero. Use 20us as a fuzz. if l := c.rateLimit(60); l != 0 || abs(c.badness-2500*time.Millisecond) > 20*time.Microsecond { t.Errorf("Rate limit calculating badness incorrectly.") } // At this point, we can tip over the badness scale, with a bit of help. // 720 chars => +8 seconds of badness => 10.5 seconds => ratelimit if l := c.rateLimit(720); l != 8*time.Second || abs(c.badness-10500*time.Millisecond) > 20*time.Microsecond { t.Errorf("Rate limit failed to return correct limiting values.") t.Errorf("l=%d, badness=%d", l, c.badness) } }